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Abstract—This study investigates the repairable single server
queue with working vacations and system disasters. The server
allows to take a working vacation if there is no any customers in
the system. There is a possibility of breakdowns happening in a
system. When the system occurs server breakdowns, the server
goes to the failure state and all customers in the queue are flushed
away. The repairing process starts immediately, when the server
comes to the failure state. The explicit expression for system
size probabilities of the queueing system is derived in terms of
the modified Bessel function of first kind using the probability
generating function method, Laplace transform and continued
fractions. Additionally, the mean and variance for number of
jobs in the system at time t are derived as the performance
measures.

Index Terms—M/M/1 queue, system break-downs, working
vacations, transient solution

I. I NTRODUCTION

Applications of queueing model with vacations exist
in various fields such as network service, web service,
file transfer service and mail service. Working vacation is
one type of the vacation policies and Servi and Finn [19]
introduced this concept generalizing the classical single
server vacation model. They derived the explicit expressions
for the mean, variance of the number of customers in the
queue. In working vacation duration, the server serves the
customers with a lower rate than the normal service rate.
This may be a reason to reduce the leaving of customers
from the system during the vacation period. Wu and Takagi
[25] have derived the expressions for the number of jobs in
the queue and the response time for an arbitrary customer
extending theM/M/1/WV model to newM/G/1/WV
model. A GI/M/1 queue with multiple working vacations
was analyzed by Baba [3] to obtain the steady state result
for the system size in the queue both at arrival and arbitrary
epochs. Banik et al. [5] discussed the finite buffer single
serverGI/M/1 queue with multiple working vacations and
they presented the distribution for number of customers
in the system at pre-arrival and arbitrary epoch. Do [8]
obtained time independent expression for the retrialM/M/1
queue with working vacations. Yang et al. [26] applied the
matrix-analytic method to derive the steady-state probabilities
and some system characteristics of theF -policy M/M/1/K
queueing system with working vacation. Baba [4] has

discussed aboutMX/M/1 queue with multiple working
vacation and he obtained the probability distribution for
system size and some of the performance measures for
the queueing system considering that the server is in its
equilibrium state. Arivudainambi et al. [2] have derived
stationary result for a single server retrial queue introducing
the concept of single working vacation. TheM/G/1 queue
with working vacations has been analyzed by Aissani et al.
[1] to derive the expressions for joint probability distribution
of the server state and system size probabilities of the queue
when the server is in steady-state by using the Laplace and z-
transforms. Recently, Vijaya Laxmi and Rajesh [23] analyzed
single sever queue with customer impatience and variant
working vacation policy. They obtained the explicit expression
for system size probabilities and some performance measures
at steady state.

Gelenbe [9] introduced the notion of catastrophes and it
has been gaining significant scholarly attention during the
last few decades since their applications are widely used in
service systems, computer systems, manufacturing systems
and. Catastrophes occur at random time when server is to
complete the servicing for all the customers at that time or
the server inactivates until a new arrival. This situation can be
considered as negative customer arrival in queueing system
and they have a property to remove all the customers or some
of them in the queueing system. It may be possible to happen
either from another service station or from outside the system.
A mail server with an infected virus can be considered as
an example for a queueing system with catastrophes. Since
this email transmit the virus during its transferring to the
other processors, disasters may occur to clear the operation
of all emails stored in the system. Krishna Kumar and
Arivudainambi [14] analyzed the transient solution for an
M/M/1 queue with catastrophes. Chao [6] has extended the
research which has been done by Di Crescenzo et al. [7] for
theM/M/1 queue with catastrophes to a network of queues.
An M/M/R/N queueing system with balking, reneging and
server break-downs was analyzed by Wang and Chang [24].

Queueing system with repairable servers often arise in the
field of computer and communication switching systems and
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web servicing systems where the processors have to handle
failing and repairing of them [16]. Therefore, the studying
of queues subjected to catastrophes and breakdowns and
repairable servers has got more attention of the researchers. An
M/M/1 queue which hasN servers with server breakdowns
and repairs has been analyzed by Neuts and Lucantoni
[17]. A single server priority queue with server failures and
queue flushing has been discussed by Towsley and Tripathi
[22]. The transient solution for anM/M/1 queue subjected
to catastrophes with server failure and non-zero repairable
time has been derived by Krishna Kumar and Pavavi [15].
Giorno et al. [10] has obtained jump diffusion approximation
for a double ended queue with catastrophes and repairs.
Kalidass and et al. [13] derived the transient solution of an
N -policy single server queueing system with catastrophes
and repairable server. A single server queueing system with
balking, catastrophes, server failures and repairs was analyzed
by Tarabia [21] extending the model of Krishna Kumar and
Pavai [15] with balking feature and he has obtained transient
and steady state probabilities with the use of probability
generating function technique and a direct approach.

Yechiali [27] has obtained the time independent
probabilities of the system size of the queue with system
break downs and customer impatience. Expanding this
model, Sudesh [20] derived the transient solutions for the
probabilities of number of customers in the system with the
use of generating function methods and continued fractions.
Considering anM/M/1 queue with working vacation and
multiple types of server breakdowns, the distribution for
number of jobs in the system was derived by Jain and Jain
[12]. An M/M/1 queueing system with second optional
service and unreliable server has been extensively researched.
Using the matrix geometric technique, Jain and Chauhan
[11] have analyzed a single server queue with unreliable
server and second optional service. Dealing with a feedback
retrial M/G/1 queue with multiple working vacations and
vacation interruption, Rajadurai et al. [18] has obtained the
time independent probabilities for the system size and some
performance measures.

In existing literature, analyzing a repairable single server
queue with working vacations and system disasters in
transient state is less researched. Therefore, in this research,
the transient solutions of anM/M/1 queue with working
vacations and system disasters are obtained using Laplace
transform, probability generating function technique and
continued fractions. As the performance measures, mean
and variance of the system size are explicitly expressed.
The findings of this study is applicable in manufacturing
systems, computer communication systems, network systems
and inventory systems etc. Therefore, the results of this
research may help people who use queueing theory to deal
with congestion problems in the systems.

This paper has organized as follows. Section II includes

the model for a repairable single server queue with working
vacations and system disasters in transient state. The results
of the explicit expressions for the time dependent system size
probabilities are derived in section III. Section IV presents the
time dependent expected values. Conclusions of this work is
discussed under section V.

II. M ODEL DESCRIPTION

A single server queueing model with system failure and
working vacations is considered. The assumptions of the
system are build up as follows:

1) Arrivals are allowed to join the system according to
a Poisson process with rateλ and service takes place
according to an exponential distribution with rateµ.

2) The server takes a working vacation when there are no
customers in the system. Working vacation policy has an
exponential distribution with mean1/γ and the server
serves the customers with service rateµv(< µ) during
the working vacation.

3) The system faces server breakdowns at a Poisson rate
η. It means that life time of the system is exponentially
distributed with mean1/η. When it suffers a server
breakdown, all customers in the queue are flushed away
and the server goes to the failure state.

4) The repairing process is started immediately, when serv-
er comes to the failure state and the repair time has an
exponential distribution with mean1/ν.

5) It is assumed that inter-arrival times, service times, repair
times and vacation times are mutually independent and
the service discipline is First-In, First-Out (FIFO).

Let {X(t), t ≥ 0} denotes the total number of customers
in the system at timet and letJ(t) represents the state of the
system at timet, which is defined as follows:

J(t) =































0, if the server being in failure state
at time t

1, if the server being in functional state
at time t

2, if the server being in working vacation
at time t

Then{J(t), X(t), t ≥ 0} is a two-dimensional continuous
time Markov process on the state spaceS = {(j, n); j =
0, 1, 2;n = 0, 1, 2, ...}. Let Pj,n(t) be the time dependent
probabilities for the system to be in the statej with n
customers at timet. Let

P0,n(t) = Prob{J(t) = 0, X(t) = n}, n = 0, 1, 2, ....

P1,n(t) = Prob{J(t) = 1, X(t) = n}, n = 1, 2, 3, ....

P2,n(t) = Prob{J(t) = 2, X(t) = n}, n = 0, 1, 2, ....
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Then, the set of forward Kolmogorov differential difference
equations governing the process is given by

P
′

0,0(t)=−(λ+ ν)P0,0(t) + η

∞
∑

n=1

(P1,n(t) + P2,n(t)) (1)

P
′

0,n(t)=λP0,n−1(t)− (λ+ ν)P0,n(t), n ≥ 1 (2)

P
′

1,1(t)=−(λ+ µ+ η)P1,1(t) + µP1,2(t) + νP0,1(t)

+γP2,1(t) (3)

P
′

1,n(t)=λP1,n−1(t)− (λ+ µ+ η)P1,n(t) + µP1,n+1(t)

+νP0,n(t) + γP2,n(t);n ≥ 2 (4)

P
′

2,0(t)=−λP2,0(t) + µvP2,1(t) + µP1,1(t) + νP0,0(t) (5)

P
′

2,n(t)=λP2,n−1(t)− (λ+ µv + η + γ)P2,n(t)

+µvP2,n+1(t);n ≥ 1 (6)

Initially, it is assumed that there are no customers in the
queueing system and the server being in the working vacation
state, i.e.,P0,0(0) = 0 andP2,0(0) = 1 andPj,n(0) = 0 for
n ≥ 1 andj = 0, 1, 2.

III. T RANSIENT PROBABILITIES

In this section, the transient solution of the above described
model is derived by employing generating functions, Laplace
transform and continued fractions. Time dependent analysis is
used to understand the behavior of a queueing system, when
the parameters are perturbed.

A. Evaluation of P1,n(t)

Define the generating function as follows, for|z| ≤ 1

P (z, t)=

∞
∑

n=1

P1,n(t)z
n,

with initial conditionP (z, 0) = 0.
Multiplying the Equations (3) and (4) by appropriate powers

of z and summing overn ≥ 1, we can obtain

∂P (z, t)

∂t
=

∞
∑

n=1

P
′

1,n(t)z
n

∂P (z, t)

∂t
=−

[

λ(1− z) + µ(1− z−1) + η
]

P (z, t)

+ν

∞
∑

n=1

P0,n(t)z
n + γ

∞
∑

n=1

P2,n(t)z
n

−µP1,1(t) (7)

Since the Equation (7) is a first-order partial differential
equation forP (z, t), after solving the Equation (7) using the

integrating factorexp
{[

λ(1 − z) + µ(1− z−1) + η
]

t
}

, we
will have

P (z, t)=ν

∫ t

0

(

∞
∑

m=1

P0,m(u)zm

)

×e−[λ(1−z)+µ(1−z−1)+η](t−u)du

+γ

∫ t

0

(

∞
∑

m=1

P2,m(u)zm

)

×e−[λ(1−z)+µ(1−z−1)+η](t−u)du

−µ

∫ t

0

P1,1(u)e
−[λ(1−z)+µ(1−z−1)+η](t−u)du (8)

It is well known that ifα = 2
√
λµ and β =

√

λ
µ

, then

exp
[(

λz +
µ

z

)

t
]

=
∞
∑

n=−∞

(βz)n In (αt)

whereIn(·) is the modified Bessel function of the first kind.
Substituting this equation to the equation (8), we have

P (z, t)=ν

∫ t

0

(

∞
∑

m=1

P1,m(u)zm

)

e−(λ+µ+η)(t−u)

×
∞
∑

n=−∞

(βz)
n
In (α(t− u)) du

+γ

∫ t

0

(

∞
∑

m=1

P2,m(u)zm

)

e−(λ+µ+η)(t−u)

×
∞
∑

n=−∞

(βz)
n
In (α(t− u)) du

−µ

∫ t

0

P1,1(u)e
−(λ+µ+η)(t−u)

×
∞
∑

n=−∞

(βz)
n
In (α(t− u)) du (9)

Comparing the coefficients ofzn in the Equation (9) for
n = 1, 2, 3, .... leads to

P1,n(t)=ν

∫ t

0

∞
∑

m=1

P0,m(u)βn−mIn−m (α(t− u))

×e−(λ+µ+η)(t−u)du

+γ

∫ t

0

∞
∑

m=1

P2,m(u)βn−mIn−m (α(t− u))

×e−(λ+µ+η)(t−u)du

−µ

∫ t

0

P1,1(u)β
nIn (α(t− u))

×e−(λ+µ+η)(t−u)du (10)

Using the fact thatI−n(·) = In(·) and comparing the
coefficients ofz−n in the Equation (9) yields
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0=ν

∫ t

0

∞
∑

m=1

P0,m(u)βn−mIn+m (α(t− u))

×e−(λ+µ+η)(t−u)du

+γ

∫ t

0

∞
∑

m=1

P2,m(u)βn−mIn+m (α(t− u))

×e−(λ+µ+η)(t−u)du

−µ

∫ t

0

P1,1(u)β
nIn (α(t− u)) e−(λ+µ+η)(t−u)du(11)

Subtracting the Equation (10) from the Equation (11) for
n = 1, 2, 3, ..., we have

P1,n(t)=ν

∫ t

0

∞
∑

m=1

P0,m(u)βn−m [In−m (α(t − u))

−In+m (α(t− u))] e−(λ+µ+η)(t−u)du

+γ

∫ t

0

∞
∑

m=1

P2,m(u)βn−m [In−m (α(t− u))

−In+m (α(t− u))] e−(λ+µ+η)(t−u)du (12)

It is clear thatP1,n(t) are expressed in terms ofP0,n(t)
andP2,n(t) and they are given by the Equations (15) and (19)
respectively.

B. Evaluation of P0,n(t)

P̂j,n(s) represents Laplace transform ofPj,n(t). Taking the
Laplace transform of the Equation (2), we can obtain

sP̂0,n(s)− P0,n(s)=−(λ+ ν)P̂0,n(s) + λP̂0,n−1(s)

Substituting the initial value and after some algebra, we
have

P̂0,n(s)=

(

λ

s+ λ+ ν

)n

P̂0,0(s)

We can obtain the following equation after taking the
Laplace transform of the Equation (1) and applying the initial
condition

(s+ λ+ ν)P̂0,0(s)=η

∞
∑

n=1

(

P̂1,n(s) + P̂2,n(s)
)

(13)

Clearly for t > 0,
∞
∑

n=0

P0,n(t) +

∞
∑

n=1

P1,n(t) +

∞
∑

n=0

P2,n(t)=1

The above equation can be expressed as follows after taking
Laplace transform and some algebra

∞
∑

n=1

(

P̂1,n(s) + P̂2,n(s)
)

=
1

s
− P̂2,0(s)−

∞
∑

n=0

P̂0,n(s)

Substituting the above equation to the Equation (13) and
after some mathematical calculations, we are able to derive

P̂0,0(s)=A(s)

[

1

s
− P̂2,0(s)

]

(14)

where

A(s)=
η

(s+ λ+ ν)

∞
∑

k=0

(−1)k
(

η

s+ ν

)k

We will have the following equation after taking inversion
of the above equation,

P0,0(t)=A(t) ∗ [1− P2,0(t)]

where

A(t)=e−(λ+ν)t
∞
∑

k=0

(−1)kηk+1e−νt tk−1

(k − 1)!

Then

P̂0,n(s)=A(s)

[

1

s
− P̂2,0(s)

](

λ

s+ λ+ ν

)n

After taking inverse Laplace transform transform of the
above equation, we have

P0,n(t)=λnA(t) ∗ (1− P2,0(t)) ∗ e−(λ+ν)t tn−1

(n− 1)!
(15)

where “*” denotes the convolution. The terms forP0,0(t) and
P0,n(t) are expressed in terms ofP2,0(t) which is given by
the Equation (21).

C. Evaluation of P2,n(t)

Laplace transform can be used to derive the following
equation by the Equation (6),

sP̂2,n(s)− P2,n(0)=λP̂2,n−1(s)− (λ+ µv + η + γ)P̂2,n(s)

+µvP̂2,n+1(s)

Applying the initial condition to the above equation and
after some algebra, we have

P̂2,n(s)

P̂2,n−1(s)
=

λ

(s+ λ+ µv + η + γ)− µv
P̂2,n+1(s)

P̂2,n(s)

Iterating the above equation, we have
P̂2,n(s)

P̂2,n−1(s)
=

λ

(s + λ + µv + η + γ) −
λµv

(s+λ+µv+η+γ)−
λµv

(s+λ+µv+η+γ)−......

It can be rewritten as follows

P̂2,n(s)

P̂2,n−1(s)
=

λ

(s+ λ+ µv + η + γ)− Φ(s)
(16)

where

Φ(s)=
λµv

(s+ λ+ µv + η + γ)− λµv

(s+λ+µv+η+γ)−......

(17)
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Clearly Φ(s) satisfies the quadric equation
Φ2(s) − (s+ λ+ µv + η + γ)Φ(s) + λµv = 0. This

equation has two roots
P+

√
P 2−4λµv

2 and
P−

√
P 2−4λµv

2 .

Here, since
P−

√
P 2−4λµv

2 < 1, it is the real root ofΦ(s).
WhereP = s+ λ+ µv + η + γ.

SubstitutingΦ(s) to the Equation (17) and after some
algebra, we will have

P̂2,n(s)=

(

2λ

P +
√
P 2 − θ2

)n

P̂2,0(s) (18)

whereθ = 2
√
λµv.

Taking the Laplace transform of the above equation, we can
obtain

P2,n(t)=

(

2

θ

)n−1

λn [In−1(θt)− In+1(θt)]

×e−(λ+µv+η+γ)t ∗ P2,0(t) (19)

It is clear thatP2,n(t) are expressed in terms ofP2,0(t)
which is given by the Equation (21). Where “*” denotes the
convolution.

D. Evaluation of P2,0(t)

We have the following equation after taking the Laplace
transform of the Equation (5)

sP̂2,0(s)− P2,0(0)=−λP̂2,0(s) + µvP̂2,1(s)

+µP̂1,1(s) + νP̂0,0(s)

Applying the initial condition and substituting the Equation
(18) for n = 1, we can derive

P̂2,0(s)=

∞
∑

j=0

(2λµv)
j

(s+ λ)
j+1 (

P +
√
P 2 − θ2

)j

×
[

1 + µP̂1,1(s) + νP̂0,0(s)
]

And again, substituting the Equation (14) to the above
equation, we have

P̂2,0(s)=
(

1 + µP̂1,1(s)
)

Gi(s)B(s)− Gi+1(s)

s
(20)

where

B(s)=

∞
∑

j=0

(2λµv)
j

(s+ λ)
j+1 (

P +
√
P 2 − θ2

)j

and

Gn(s)=

∞
∑

n=0

(−1)nνn [A(s)]n [B(s)]n

Inversion of the Equation (21) yields,

P2,0(t)=(1 + µP1,1(t)) ∗Gi(t) ∗B(t)

−
∫ t

0

Gi+1(u)du (21)

where

B(t)=

∞
∑

j=0

(

2

θ

)j−1

(λµv)
j
e−λt tj−1

(j − 1)!

∗ [Im−1(θt) − Im+1(θt)] e
−(λ+µv+η+γ)t

and

Gn(t)=

∞
∑

n=0

(−1)nνn [A(s)]
∗n ∗ [B(s)]

∗n

It is clear thatP2,0(t) is expressed in terms ofP1,1(t) and
P1,1(t) is expressed by the Equation (24). Where “*” denotes
the convolution, while “∗n” represents then-fold convolution.

E. Evaluation of P1,1(t)

Substitutingn = 1 to the Equation (12) and using the fact
that I−n(·) = In(·), we can obtain

P1,1(t)=ν

∫ t

0

∞
∑

m=1

P0,m(u)β1−m [Im−1 (α(t− u))

−Im+1 (α(t− u))] e−(λ+µ+η)(t−u)du

+γ

∫ t

0

∞
∑

m=1

P2,m(u)β1−m [Im−1 (α(t− u))

−Im+1 (α(t− u))] e−(λ+µ+η)(t−u)du (22)

Using the following Bessel identity

Im−1 (α(t − u))− Im+1 (α(t− u))=2m
Im (α(t− u))

α(t− u)

The Equation (22) can be rewritten as follows,

P1,1(t)=ν

∫ t

0

∞
∑

m=1

P0,m(u)β1−m2m
Im (α(t − u))

α(t− u)

×e−(λ+µ+η)(t−u)du

+γ

∫ t

0

∞
∑

m=1

P2,m(u)β1−m2m
Im (α(t− u))

α(t− u)

×e−(λ+µ+η)(t−u)du

Taking the Laplace transform of the above equation and
after some algebra, we have

P̂1,1(s)=2ν

∞
∑

m=1

P̂0,m(s)
β1−m

αm+1

(

P1 −
√

P 2
1 − α2

)m

+2γ

∞
∑

m=1

P̂2,m(s)
β1−m

αm+1

(

P1 −
√

P 2
1 − α2

)m
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whereP1 = λ+ µ+ η.

Again, substituting the Equation (15) to above equation, we
can obtain

P̂1,1(s)=
A(s)H(s)

s
+ [K(s)−A(s)H(s)] P̂2,0(s)

Finally, we can derive the following expression forP̂1,1(t)
substituting the Equation (20) to the above equation and doing
some mathematical calculations,

P̂1,1(s)=

{

A(s)H(s)

s
+ [K(s)−A(s)H(s)]

[

Gi(s)B(s) − Gi+1(s)

s

]}

×
{

∞
∑

r=1

µr [Gi(s)]
r
[B(s)]

r

×
∞
∑

m=0

(−1)m
(

r

m

)

[K(s)]
m
[A(s)H(s)]

r−m

}

(23)

where

H(s)=2ν

∞
∑

m=1

(

λ

s+ λ+ ν

)m
β1−m

αm+1

×
(

P1 −
√

P 2
1 − α2

)m

and

K(s)=2γ

∞
∑

m=1

(

2λ

P +
√
P 2 − θ2

)m
β1−m

αm+1

×
(

P1 −
√

P 2
1 − α2

)m

Inversion of the Equation (23) provides the following re-
sults

P1,1(t)=

{
∫ t

0

A(u) ∗H(u)du + [K(t)−A(t) ∗H(t)]

∗
[

Gi(t) ∗B(t)−
∫ t

0

Gi+1(u)du

]}

∗
{

∞
∑

r=1

µr [Gi(t)]
∗r ∗ [B(t)]

∗r ∗
∞
∑

m=0

(−1)m
(

r

m

)

× [K(t)]
∗m ∗ [A(t) ∗H(t)]

∗(r−m)
}

(24)

where

H(t)=ν

∞
∑

m=1

λmβ1−me−(λ+ν)t tm−1

(m− 1)!
∗ [Im−1(αt)

−Im+1(αt)] e
−(λ+µ+η)t

and

K(t)=γ

∞
∑

m=1

(

2

θ

)m−1

λmβ1−m [Im−1(θt)

−Im+1(θt)] e
−(λ+µv+η+γ)t

∗ [Im−1(αt)− Im+1(αt)] e
−(λ+µ+η)t

where ‘*’ denotes convolution while ‘*r’, ‘* m’ and
‘* (r −m)’, representr-fold convolution,m-fold convolution
and ‘(r −m)’ convolution respectively.

All the time-dependent probabilities are explicitly derived in
terms of modified Bessel function of the first kind by making
use of Laplace transform, probability generating function
techniques and continued fractions.

IV. T IME DEPENDENT MEAN AND VARIANCE

In this section, time dependent expected value and variance
of the system size distribution are derived.

A. Mean

Let X(t) denotes the number of jobs in the system at time
t. The average number of jobs in the system at timet is given
by

m(t) = E(X(t)) =
∞
∑

n=1

n (P0,n(t) + P1,n(t) + P2,n(t))

m(0) =

∞
∑

n=1

n (P0,n(0) + P1,n(0) + P2,0(t)) = 0

m
′

(t) =

∞
∑

n=1

n
(

P
′

0,n(t) + P
′

1,n(t) + P
′

2,n(t)
)

By the Equations (2), (3), (4) and (6) and after some algebra,
we have the following equation

m
′

(t)=λ− η

[

∞
∑

n=1

n (P1,n(t) + P2,n(t))

]

−µ

∞
∑

n=1

P1,n(t)− µv

∞
∑

n=1

P2,n(t)

By using the initial conditionm(0) = 0 and integrating it
by t, the solution of the above equation can be obtained as
follows;

m(t)=λt− η

∞
∑

n=1

n

[
∫ t

0

P1,n(u)du+

∫ t

0

P2,n(u)du

]

−µ

∞
∑

n=1

∫ t

0

P1,n(u)du

−µv

∞
∑

n=1

∫ t

0

P2,n(u)du (25)

whereP1,n(t) andP2,n(t) are given by the Equations (12)
and (19) respectively.

B. Variance

Let X(t) denotes the number of jobs in the system at time
t. The variance for number of jobs in the system at timet is
given by

V ar(X(t))=E(X2(t))− [E(X(t))]
2
,

V ar(X(t))=k(t)− [m(t)]2 (26)
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where

k(t) = E(X2(t)) =

∞
∑

n=1

n2 (P0,n(t) + P1,n(t) + P2,n(t))

Also,

k(0) =
∞
∑

n=1

n2 (P0,n(0) + P1,n(0) + P2,n(0)) = 0

and

k
′

(t)=

∞
∑

n=1

n2
(

P
′

0,n(t) + P
′

1,n(t) + P
′

2,n(t)
)

By Equations (2), (3), (4) and (6) and after some algebra,
we have the following equation

k
′

(t)=2λm(t) + λ− η

∞
∑

n=1

n2 [P1,n(t) + P2,n(t)]

−2µ

∞
∑

n=1

nP1,n(t)− 2µv

∞
∑

n=1

nP2,n(t)

+µ
∞
∑

n=1

P1,n(t) + µv

∞
∑

n=1

P2,n(t)

By using the initial conditionk(0) = 0 and integrating it
by t, the solution of the above equation can be obtained as
follows;

k(t)=2λ

∫ t

0

m(u)du+ λt

−η

∞
∑

n=1

n2

[
∫ t

0

P1,n(u)du +

∫ t

0

P2,n(u)du

]

−2µ

∞
∑

n=1

n

∫ t

0

P1,n(u)du− 2µv

∞
∑

n=1

n

∫ t

0

P2,n(u)du

+µ
∞
∑

n=1

∫ t

0

P1,n(u)du + µv

∞
∑

n=1

∫ t

0

P2,n(u)du

Substituting above equation into the Equation (26), we will
have

V ar(X(t))=2λ

∫ t

0

m(u)du+ λt

−η

∞
∑

n=1

n2

[
∫ t

0

P1,n(u)du+

∫ t

0

P2,n(u)du

]

−2µ
∞
∑

n=1

n

∫ t

0

P1,n(u)du

−2µv

∞
∑

n=1

n

∫ t

0

P2,n(u)du

+µ

∞
∑

n=1

∫ t

0

P1,n(u)du+ µv

∞
∑

n=1

∫ t

0

P2,n(u)du

− [m(t)]2

whereP1,n(t), P2,n(t) andm(t) are given by the Equations
(12), (19) and (25) respectively.

V. CONCLUSIONS

A repairable single server queue with working vacations
and system disasters is considered in transient regime and
the explicit expression for system size probabilities of the
queueing system are derived in terms of the modified Bessel
function of first kind. Probability generating function method,
Laplace transform and continued fractions are used to derive
the transient solution. Additionally, the mean and variance for
number of jobs in the system at timet are derived as the
performance measures.
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